
John McGowan Page 1 11/25/08

Programming Management 101

Version: 1.1 Date: November 25, 2008

© 2008 John F. McGowan, Ph.D.

In my experience, many people without significant experience in
programming harbor a number of misconceptions about programming.
By far the most common is the seemingly common sense expectation
that experienced programmers should be able to accurately predict the
schedule of the project. This leads to many misunderstandings, bad
decisions, and frustrating experiences.

Most programming is unpredictable. Sincere cost and schedule
estimates tend to be low, often by factors of three or four. Most
substantial programming projects encounter unexpected problems, so-
called "unknown unknowns" or "unk unks" in technical jargon. This
happens in part because one almost never does the same
programming project twice.

The most common source of misunderstandings about programming
are analogies to repetitive or mostly repetitive physical tasks. Both
the popular and technical programming literature is full of analogies to
construction projects such as building a home, erecting a large
building, or ship-building. Most popular project management
techniques such as Gantt charts, Program Evaluation and Review
Technique (PERT), and Critical Path Method (CPM) have their roots in
large construction projects. These project management methods were
adapted to Research and Development and later software development
by military organizations such as the Air Force and Navy. These
methods have been widely adopted in the private sector and are
incorporated in widely used project management products and
systems such as Microsoft Project.

The underlying analogy of R&D and software projects to physical
construction projects is, however, flawed. Military and other
government R&D and software projects managed using these
techniques derived from construction are notorious for large cost and
schedule overruns. For example, the Department of Defense's Space
Based Infrared System (SBIRS) is currently (2008) at least 400% over
its original budget. Software development cost and schedule overruns
have specifically been cited as a major contributor to SBIRS problems.
Other recent R&D programs with major cost and schedule overruns
include the Air Force's Transformational Satellite or TSAT, the BASIC

John McGowan Page 2 11/25/08

reconnaissance satellite program, the NPOESS meteorological satellite,
and the classified Future Imagery Architecture (FIA). In part, this is
because these project management techniques simply don't work even
when applied honestly and sincerely.

In many physical tasks, once the performer has learned the task and
performed it several times, they can perform the task very predictably
over and over again. For example, at a restaurant, once an employee
learns to make a sandwich, they can make the sandwich over and over
again in a few minutes with only a small variation in the expected time
to complete the task. Similarly, some construction projects are very
predictable. It takes so much time to hammer a nail into a two-by-
four, so much time to assemble several two-by-fours into a frame, and
so forth. If the requirements are not changed in the middle of a
construction project, the construction project manager can often
predict the required cost and schedule accurately because he (or she)
is performing essentially the same task over again.

In software, the end product, the program, can be replicated at
essentially no time and cost (e.g., copy program.exe
program_copy.exe). Hence, there are almost no repetitive or mostly
repetitive physical tasks. Programming is analogous to intellectual
tasks such as learning something new, developing a new architectural
design, and so forth. Most non-trivial programming projects require a
significant amount of trial and error. With more experience, the
amount of trial and error required is reduced, but it cannot be
eliminated.

The bottom line is that programming is significantly less predictable
than many forms of physical work such as construction. Unexpected
problems, “unknown unknowns”, are normal. The original budget and
schedule estimates for research and development and software
projects usually do not include adequate reserves for unexpected
problems, which often should be larger than the identifiable costs. A
common joke is: to get the real schedule, multiply the official schedule
by PI (3.14) for running around in a circle. In general, large reserves
should be budgeted up front for unexpected problems.

About the Author

John F. McGowan, Ph.D. is a software developer, research
scientist, and consultant. He works primarily in the area of complex
algorithms that embody advanced mathematical and logical concepts,
including speech recognition and video compression technologies. He

John McGowan Page 3 11/25/08

has many years of experience developing software in Visual Basic,
C++, and many other programming languages and environments. He
has a Ph.D. in Physics from the University of Illinois at Urbana-
Champaign and a B.S.in Physics from the California Institute of
Technology (Caltech). He can be reached at
jmcgowan11@earthlink.net.

